Introduction to Mathematics and Modeling

lecture 8

The cross product
This week

1. Section 12.4: the cross product
2. Section 12.5: lines and planes in space
The cross product – introduction

Definition

Let \(\mathbf{u} = (u_1, u_2, u_3) \) and \(\mathbf{v} = (v_1, v_2, v_3) \) be two vectors in \(\mathbb{R}^3 \). The cross product \(\mathbf{u} \times \mathbf{v} \) is defined as

\[
\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).
\]
The cross product – introduction

Section 12.4

1.1

Definition

Let $u = (u_1, u_2, u_3)$ and $v = (v_1, v_2, v_3)$ be two vectors in \mathbb{R}^3. The cross product van u and v is defined as

$$u \times v = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$$

- The Dutch name for the cross product is *uitproduct* or *uitwendig product*.
Definition

Let \(u = (u_1, u_2, u_3) \) and \(v = (v_1, v_2, v_3) \) be two vectors in \(\mathbb{R}^3 \). The cross product \(u \times v \) is defined as

\[
\begin{align*}
 u \times v &= (u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1) \end{align*}
\]

- The Dutch name for the cross product is \textit{uitproduct} or \textit{uitwendig product}.
- The cross product can be computed using this trick:

\[
\begin{pmatrix}
 u_1 & u_2 & u_3 \\
 v_1 & v_2 & v_3
\end{pmatrix}
\]
Definition

Let \(\mathbf{u} = (u_1, u_2, u_3) \) and \(\mathbf{v} = (v_1, v_2, v_3) \) be two vectors in \(\mathbb{R}^3 \). The cross product van \(\mathbf{u} \) and \(\mathbf{v} \) is defined as

\[
\mathbf{u} \times \mathbf{v} = (u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1).
\]

- The Dutch name for the cross product is *uitproduct* or *uitwendig product*.
- The cross product can be computed using this trick:

\[
\begin{pmatrix}
 u_1 & u_2 & u_3 \\
v_1 & v_2 & v_3
\end{pmatrix}
\begin{pmatrix}
u_1 \\
v_2
\end{pmatrix}
\]
The cross product – introduction

Definition

Let \(u = (u_1, u_2, u_3) \) and \(v = (v_1, v_2, v_3) \) be two vectors in \(\mathbb{R}^3 \). The cross product van \(u \) and \(v \) is defined as

\[
\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).
\]

- The Dutch name for the cross product is uitproduct or uitwendig product.
- The cross product can be computed using this trick:

\[
\begin{pmatrix}
\mathbf{u} & \mathbf{v}
\end{pmatrix} = \begin{pmatrix}
 u_1 & u_2 & u_3 \\
 v_1 & v_2 & v_3
\end{pmatrix}
\begin{pmatrix}
 u_1 & u_2 \\
 v_1 & v_2
\end{pmatrix}
\]
The cross product – introduction

Definition

Let \(u = (u_1, u_2, u_3) \) and \(v = (v_1, v_2, v_3) \) be two vectors in \(\mathbb{R}^3 \). The cross product van \(u \) and \(v \) is defined as

\[
\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).
\]

- The Dutch name for the cross product is **uitproduct** or **uitwendig product**.
- The cross product can be computed using this trick:

\[
\mathbf{u} \begin{pmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix} \mathbf{v}
\]

Exercise

Calculate the cross product \(\mathbf{u} \times \mathbf{v} \) of \(\mathbf{u} = (2, 2, -1) \) and \(\mathbf{v} = (-1, 2, 2) \).

Answer

\[
\mathbf{u} \times \mathbf{v} = (6, -3, 6).
\]
Let $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ be two vectors in \mathbb{R}^3. The cross product van \mathbf{u} and \mathbf{v} is defined as

$$\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$$

- The Dutch name for the cross product is *uitproduct* or *uitwendig product*.
- The cross product can be computed using this trick:
Exercise

Calculate the cross product $\mathbf{u} \times \mathbf{v}$ of $\mathbf{u} = (2, 2, -1)$ and $\mathbf{v} = (-1, 2, 2)$.

$\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1)$.

- The Dutch name for the cross product is *uitproduct* or *uitwendig product*.
- The cross product can be computed using this trick:

$$
\mathbf{u} \begin{pmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$
Exercise

Calculate the cross product \(u \times v \) of \(u = (2, 2, -1) \) and \(v = (-1, 2, 2) \).

Answer

\[u \times v = (6, -3, 6) \]

The cross product can be computed using this trick:

\[
\begin{bmatrix}
 u_1 & u_2 & u_3 \\
 v_1 & v_2 & v_3
\end{bmatrix}
\begin{bmatrix}
 u_1 \\
 u_2 \\
 u_3
\end{bmatrix}
\begin{bmatrix}
 v_1 \\
 v_2
\end{bmatrix}
\]
Laws and properties

Theorem

For all \(u, v, w \in \mathbb{R}^n \) *and* \(r, s \in \mathbb{R} \) *we have*

1. \((ru) \times (sv) = (rs)(u \times v)\)
2. \(u \times (v + w) = u \times v + u \times w\)
3. \(u \times v = -(v \times u)\)
4. \((v + w) \times u = v \times u + w \times u\)
5. \(0 \times u = u \times 0 = 0\)
6. \(u \times (v \times w) = (u \cdot w)v - (u \cdot v)w\)

Property 4 can be proved with properties 2 and 3.
Theorem

For all $u, v, w \in \mathbb{R}^n$ and $r, s \in \mathbb{R}$ we have

1. $(ru) \times (sv) = (rs)(u \times v)$
2. $u \times (v + w) = u \times v + u \times w$
3. $u \times v = -(v \times u)$
4. $(v + w) \times u = v \times u + w \times u$
5. $0 \times u = u \times 0 = 0$
6. $u \times (v \times w) = (u \cdot w)v - (u \cdot v)w$

- Property 4 can be proved with properties 2 and 3.
Theorem

Let \mathbf{u} and \mathbf{v} be two vectors. If θ is the acute positive angle between \mathbf{u} and \mathbf{v}, then

$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta.$$
Theorem

Let \(\mathbf{u} \) and \(\mathbf{v} \) be two vectors. If \(\theta \) is the acute positive angle between \(\mathbf{u} \) and \(\mathbf{v} \), then

\[
|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta.
\]

- Acute means: \(\theta \leq \pi \), hence \(\sin \theta \geq 0 \).
Theorem

For all vectors u and v we have $u \times v \perp u$ and $u \times v \perp v$.

Vector $u \times v$ is perpendicular to the plane through u and v.

The length of $u \times v$ is $|u||v|\sin \theta$.

The right-hand rule determines the direction of $u \times v$.

UNIVERSITY OF TWENTE. Introduction to Mathematics and Modeling Lecture 8: The cross product
Theorem

For all vectors \mathbf{u} and \mathbf{v} we have $\mathbf{u} \times \mathbf{v} \perp \mathbf{u}$ and $\mathbf{u} \times \mathbf{v} \perp \mathbf{v}$.

- Vector $\mathbf{u} \times \mathbf{v}$ is perpendicular to the plane through \mathbf{u} and \mathbf{v}.
Theorem

For all vectors \(\mathbf{u} \) and \(\mathbf{v} \) we have \(\mathbf{u} \times \mathbf{v} \perp \mathbf{u} \) and \(\mathbf{u} \times \mathbf{v} \perp \mathbf{v} \).

- Vector \(\mathbf{u} \times \mathbf{v} \) is perpendicular to the plane through \(\mathbf{u} \) and \(\mathbf{v} \).
- The length of \(\mathbf{u} \times \mathbf{v} \) is \(|\mathbf{u}| |\mathbf{v}| \sin \theta \).
The cross product – geometry

Theorem

For all vectors \(\mathbf{u} \) and \(\mathbf{v} \) we have \(\mathbf{u} \times \mathbf{v} \perp \mathbf{u} \) and \(\mathbf{u} \times \mathbf{v} \perp \mathbf{v} \).

- Vector \(\mathbf{u} \times \mathbf{v} \) is perpendicular to the plane through \(\mathbf{u} \) and \(\mathbf{v} \).
- The length of \(\mathbf{u} \times \mathbf{v} \) is \(|\mathbf{u}| |\mathbf{v}| \sin \theta \).
- The right-hand rule determines the direction of \(\mathbf{u} \times \mathbf{v} \).
The area of a parallelogram

Theorem

Let \(u \in \mathbb{R}^3 \) and \(v \in \mathbb{R}^3 \) be the edges of a parallelogram \(P \). Then the area of \(P \) is equal to \(|u \times v| \).
The area of a parallelogram

Theorem

Let $u \in \mathbb{R}^3$ and $v \in \mathbb{R}^3$ be the edges of a parallelogram P. Then the area of P is equal to $|u \times v|$.

- Observe that $\sin \theta = \frac{h}{|v|}$, so $h = |v| \sin \theta$.

The area of a parallelogram

Theorem

Let \(u \in \mathbb{R}^3 \) and \(v \in \mathbb{R}^3 \) be the edges of a parallelogram \(P \). Then the area of \(P \) is equal to \(|u \times v| \).

- Observe that \(\sin \theta = \frac{h}{|v|} \), so \(h = |v| \sin \theta \).
- The area of \(P \) is

\[
|u| \ h = |u| \ |v| \sin \theta = |u \times v|.
\]
Example

Find the area of the triangle D with vertices $P = (1, -1, 0)$, $Q = (2, 1, -1)$ and $R = (-1, 1, 2)$.
The area of a parallelogram

Example

Find the area of the triangle D with vertices $P = (1, -1, 0)$, $Q = (2, 1, -1)$ and $R = (-1, 1, 2)$.

- The triangle is one half of a parallelogram with edges \overrightarrow{PQ} and \overrightarrow{PR}, hence the area of D is

$$\frac{1}{2} \left| \overrightarrow{PQ} \times \overrightarrow{PR} \right|.$$
The area of a parallelogram

Example

Find the area of the triangle D with vertices $P = (1, -1, 0)$, $Q = (2, 1, -1)$ and $R = (-1, 1, 2)$.

- The triangle is one half of a parallelogram with edges \overrightarrow{PQ} and \overrightarrow{PR}, hence the area of D is

 \[
 \frac{1}{2} \left| \overrightarrow{PQ} \times \overrightarrow{PR} \right |.
 \]

- For the cross product we have

 \[
 \overrightarrow{PQ} \times \overrightarrow{PR} = (1, 2, -1) \times (-2, 2, 2) = (6, 0, 6).
 \]
Find the area of the triangle D with vertices $P = (1, -1, 0)$, $Q = (2, 1, -1)$ and $R = (-1, 1, 2)$.

- The triangle is one half of a parallelogram with edges \overrightarrow{PQ} and \overrightarrow{PR}, hence the area of D is
 \[\frac{1}{2} \left| \overrightarrow{PQ} \times \overrightarrow{PR} \right|. \]

- For the cross product we have
 \[\overrightarrow{PQ} \times \overrightarrow{PR} = (1, 2, -1) \times (-2, 2, 2) = (6, 0, 6). \]

- For the area we have
 \[\text{area}(D) = \frac{1}{2} \left| \overrightarrow{PQ} \times \overrightarrow{PR} \right| = \frac{1}{2} \sqrt{36 + 36} = 3\sqrt{2}. \]
The area of a parallelogram in \mathbb{R}^2

Theorem

Let P be the parallelogram spanned by $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$. Then $\text{area}(P) = |u_1v_2 - u_2v_1|$.

![Diagram of parallelogram in 2D and 3D space]
The area of a parallelogram in \mathbb{R}^2

Theorem

Let P be the parallelogram spanned by $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$. Then $\text{area}(P) = |u_1 v_2 - u_2 v_1|$.

By appending a zero to the vectors \mathbf{u} and \mathbf{v} we can embed P in \mathbb{R}^3:

$\mathbf{u}' = (u_1, u_2, 0)$ and $\mathbf{v}' = (v_1, v_2, 0)$
The area of a parallelogram in \(\mathbb{R}^2 \)

Theorem

Let \(P \) be the parallelogram spanned by \(u = (u_1, u_2) \) and \(v = (v_1, v_2) \). Then \(\text{area}(P) = |u_1 v_2 - u_2 v_1| \).

By appending a zero to the vectors \(u \) and \(v \) we can embed \(P \) in \(\mathbb{R}^3 \):

\[
u' = (u_1, u_2, 0) \quad \text{and} \quad v' = (v_1, v_2, 0)
\]

The area of \(P \) is

\[
\text{area } P = |u' \times v'| = |(0, 0, u_1 v_2 - u_2 v_1)| = |u_1 v_2 - u_2 v_1|.
\]
Problem

Let S be a point in space and let ℓ be a line through P with direction vector v. Find the distance d of S to ℓ.

Problem

Let S be a point in space and let ℓ be a line through P with direction vector v. Find the distance d of S to ℓ.

Method 1: Use the projection of $u = \overrightarrow{PS}$ on ℓ:

Works in \mathbb{R}^n for every n

$$d = |h| = \left| u - \frac{u \cdot v}{v \cdot v} v \right|$$
Problem

Let S be a point in space and let ℓ be a line through P with direction vector v. Find the distance d of S to ℓ.

Method 1: Use the projection of $u = \overrightarrow{PS}$ on ℓ:

$$d = |h| = \left| u - \frac{u \cdot v}{v \cdot v} v \right|$$

Works in \mathbb{R}^n for every n

Method 2: Use the cross product:

$$d = |u| \sin \theta = \frac{|u \times v|}{|v|}$$

Only works in \mathbb{R}^3

Section 12.5, formula (5)
Example

Find the distance of \(S = (1, 1, 5) \) to the line

\[\ell : \quad x = 1 + t, \quad y = 3 - t, \quad z = 2t. \]

Using method 2:
Example

Find the distance of \(S = (1, 1, 5) \) to the line

\[
\ell : \quad x = 1 + t, \quad y = 3 - t, \quad z = 2t.
\]

Using method 2:

- Define \(P = (1, 3, 0), \quad \overrightarrow{OP} = (1, 3, 0) \) and \(\mathbf{v} = (1, -1, 2) \), then

\[
\ell : \quad \mathbf{p} + t\mathbf{v} \quad (t \in \mathbb{R}).
\]
Distance to a line

Example

Find the distance of \(S = (1, 1, 5) \) to the line

\[
\ell : \quad x = 1 + t, \quad y = 3 - t, \quad z = 2t.
\]

Using method 2:

- Define \(P = (1, 3, 0) \), \(p = \overrightarrow{OP} = (1, 3, 0) \) and \(v = (1, -1, 2) \), then \(\ell : p + tv \ (t \in \mathbb{R}) \).
- Define \(u = \overrightarrow{PS} = (1, 1, 5) - (1, 3, 0) = (0, -2, 5) \).
Example

Find the distance of \(S = (1, 1, 5) \) to the line

\[
\ell : \quad x = 1 + t, \quad y = 3 - t, \quad z = 2t.
\]

Using method 2:

- Define \(P = (1, 3, 0) \), \(\mathbf{p} = \overrightarrow{OP} = (1, 3, 0) \) and \(\mathbf{v} = (1, -1, 2) \), then
 \[
 \ell : \quad \mathbf{p} + t\mathbf{v} \quad (t \in \mathbb{R}).
 \]
- Define \(\mathbf{u} = \overrightarrow{PS} = (1, 1, 5) - (1, 3, 0) = (0, -2, 5). \)
- \(\mathbf{v} \cdot \mathbf{v} = 1^2 + (-1)^2 + 2^2 = 6 \), hence \(|\mathbf{v}| = \sqrt{6}. \)
Example 5

Find the distance of $S = (1, 1, 5)$ to the line

\[\ell : \ x = 1 + t, \quad y = 3 - t, \quad z = 2t. \]

Using method 2:

- Define $P = (1, 3, 0)$, $\mathbf{p} = \overrightarrow{OP} = (1, 3, 0)$ and $\mathbf{v} = (1, -1, 2)$, then $\ell : \mathbf{p} + t\mathbf{v} \ (t \in \mathbb{R})$.
- Define $\mathbf{u} = \overrightarrow{PS} = (1, 1, 5) - (1, 3, 0) = (0, -2, 5)$.
- $\mathbf{v} \cdot \mathbf{v} = 1^2 + (-1)^2 + 2^2 = 6$, hence $|\mathbf{v}| = \sqrt{6}$.
- $\mathbf{u} \times \mathbf{v} = (0, -2, 5) \times (1, -1, 2) = (1, 5, 2)$.

The distance is $d = \frac{|\mathbf{u} \times \mathbf{v}|}{|\mathbf{v}|} = \frac{\sqrt{30}}{\sqrt{6}} = \sqrt{5}$.

UNIVERSITY OF TWENTE. Introduction to Mathematics and Modeling Lecture 8: The cross product
Example

Find the distance of $S = (1, 1, 5)$ to the line

$$\ell : \quad x = 1 + t, \quad y = 3 - t, \quad z = 2t.$$

Using method 2:

- Define $P = (1, 3, 0)$, $p = \overrightarrow{OP} = (1, 3, 0)$ and $v = (1, -1, 2)$, then $\ell : p + tv \ (t \in \mathbb{R})$.
- Define $u = \overrightarrow{PS} = (1, 1, 5) - (1, 3, 0) = (0, -2, 5)$.
- $v \cdot v = 1^2 + (-1)^2 + 2^2 = 6$, hence $|v| = \sqrt{6}$.
- $u \times v = (0, -2, 5) \times (1, -1, 2) = (1, 5, 2)$.
- The distance is

$$d = \frac{|u \times v|}{|v|}$$
Example

Find the distance of \(S = (1, 1, 5) \) to the line

\[
\ell : \quad x = 1 + t, \quad y = 3 - t, \quad z = 2t.
\]

Using method 2:

- Define \(P = (1, 3, 0) \), \(\mathbf{p} = \overrightarrow{OP} = (1, 3, 0) \) and \(\mathbf{v} = (1, -1, 2) \), then \(\ell : \mathbf{p} + t\mathbf{v} \ (t \in \mathbb{R}) \).
- Define \(\mathbf{u} = \overrightarrow{PS} = (1, 1, 5) - (1, 3, 0) = (0, -2, 5) \).
- \(\mathbf{v} \cdot \mathbf{v} = 1^2 + (-1)^2 + 2^2 = 6 \), hence \(|\mathbf{v}| = \sqrt{6} \).
- \(\mathbf{u} \times \mathbf{v} = (0, -2, 5) \times (1, -1, 2) = (1, 5, 2) \).
- The distance is

\[
d = \frac{|\mathbf{u} \times \mathbf{v}|}{|\mathbf{v}|} = \frac{\sqrt{1^2 + 5^2 + 2^2}}{\sqrt{6}}
\]
Distance to a line

Example

Find the distance of $S = (1, 1, 5)$ *to the line*

\[\ell : \quad x = 1 + t, \quad y = 3 - t, \quad z = 2t. \]

Using method 2:

- Define $P = (1, 3, 0)$, $\mathbf{p} = \overrightarrow{OP} = (1, 3, 0)$ and $\mathbf{v} = (1, -1, 2)$, then
 \[\ell : \mathbf{p} + t\mathbf{v} \ (t \in \mathbb{R}). \]
- Define $\mathbf{u} = \overrightarrow{PS} = (1, 1, 5) - (1, 3, 0) = (0, -2, 5)$.
- $\mathbf{v} \cdot \mathbf{v} = 1^2 + (-1)^2 + 2^2 = 6$, hence $|\mathbf{v}| = \sqrt{6}$.
- $\mathbf{u} \times \mathbf{v} = (0, -2, 5) \times (1, -1, 2) = (1, 5, 2)$.
- The distance is
 \[d = \frac{|\mathbf{u} \times \mathbf{v}|}{|\mathbf{v}|} = \frac{\sqrt{1^2 + 5^2 + 2^2}}{\sqrt{6}} = \frac{\sqrt{30}}{\sqrt{6}} = \sqrt{5}. \]
Assignment: IMM2 - Tutorial 8.1
Definition

A parametrisation of the plane M is a function of the form

$$\mathbf{p} + s\mathbf{v} + t\mathbf{w}, \quad s, t \in \mathbb{R}$$

- The vector \mathbf{p} is called a **support vector** and the vectors \mathbf{v} and \mathbf{w} are called **direction vectors**.
Example

Find a parametrisation of the plane through the points \(A = (0, 0, 1), \) \(B = (2, 0, 0) \) and \(C = (0, 3, 0) \).

\[
\text{Choose support vector } \mathbf{a} = \mathbf{OA} = (0, 0, 1).
\]

\[
\text{Choose direction vectors } \mathbf{v} = \mathbf{AB} = (2, 0, -1) \text{ and } \mathbf{w} = \mathbf{AC} = (0, 3, -1).
\]

A parametrisation then is

\[
r(s, t) = \mathbf{a} + s \mathbf{v} + t \mathbf{w} = (0, 0, 1) + s(2, 0, -1) + t(0, 3, -1) = (2s, 3t, 1 - s - t),
\]

\(s, t \in \mathbb{R} \).

Check: \(A = r(0, 0), B = r(1, 0) \) and \(C = r(0, 1) \).
Example

Find a parametrisation of the plane through the points $A = (0, 0, 1)$, $B = (2, 0, 0)$ and $C = (0, 3, 0)$.

Choose support vector $a = \overrightarrow{OA} = (0, 0, 1)$.

Parametrisation of a plane

Example

Find a parametrisation of the plane through the points \(A = (0, 0, 1) \), \(B = (2, 0, 0) \) and \(C = (0, 3, 0) \).

- Choose support vector \(\mathbf{a} = \overrightarrow{OA} = (0, 0, 1) \).
- Choose direction vectors
 \[
 \mathbf{v} = \overrightarrow{AB} = (2, 0, -1)
 \]
 and
 \[
 \mathbf{w} = \overrightarrow{AC} = (0, 3, -1).
 \]
Example 7

Example

Find a parametrisation of the plane through the points $A = (0, 0, 1)$, $B = (2, 0, 0)$ and $C = (0, 3, 0)$.

- Choose support vector $\mathbf{a} = \overrightarrow{OA} = (0, 0, 1)$.
- Choose direction vectors

 $\mathbf{v} = \overrightarrow{AB} = (2, 0, -1)$

 and

 $\mathbf{w} = \overrightarrow{AC} = (0, 3, -1)$.

- A parametrisation then is

 $\mathbf{r}(s, t) = \mathbf{a} + s\mathbf{v} + t\mathbf{w}$

 $= (0, 0, 1) + s(2, 0, -1) + t(0, 3, -1)$

 $= (2s, 3t, 1 - s - t), \quad s, t \in \mathbb{R}$.
Example 7

Find a parametrisation of the plane through the points $A = (0, 0, 1)$, $B = (2, 0, 0)$ and $C = (0, 3, 0)$.

- Choose support vector $a = \overrightarrow{OA} = (0, 0, 1)$.
- Choose direction vectors
 \[v = \overrightarrow{AB} = (2, 0, -1) \]
 \[w = \overrightarrow{AC} = (0, 3, -1). \]
- A parametrisation then is
 \[r(s, t) = a + sv + tw \]
 \[= (0, 0, 1) + s(2, 0, -1) + t(0, 3, -1) \]
 \[= (2s, 3t, 1 - s - t), \quad s, t \in \mathbb{R}. \]
- Check: $A = r(0, 0)$, $B = r(1, 0)$ en $C = r(0, 1)$.
Problem

Find an equation of a plane M given by a parametrisation

$$p + sv + tw,$$

where P is a point of M and $p = \overrightarrow{OP}$.

Method 1: Three-point method: observe that P, $Q = p + v$ and $R = p + w$ are three points of M. This gives three equations involving x, y, z, s and t. Eliminate s and t to find one equation in x, y and z.

Method 2: Compute a normal vector $n = v \times w$ of M, then

$$M: n \cdot (x - p) = 0.$$
Example

Find an equation of the plane through the points \(A = (0, 0, 1) \), \(B = (2, 0, 0) \) and \(C = (0, 3, 0) \).
Example

Find an equation of the plane through the points \(A = (0, 0, 1), B = (2, 0, 0) \) and \(C = (0, 3, 0) \).

- A parametrisation of \(M \) is
 \[
 \mathbf{p} + s\mathbf{v} + t\mathbf{w} = (0, 0, 1) + s(2, 0, -1) + t(0, 3, -1)
 \]
Equation of a plane

Example

Find an equation of the plane through the points $A = (0, 0, 1)$, $B = (2, 0, 0)$ and $C = (0, 3, 0)$.

- A parametrisation of M is
 $$ p + sv + tw = (0, 0, 1) + s(2, 0, -1) + t(0, 3, -1) $$
- Find a normal vector:
 $$ n = v \times w = (2, 0, -1), 2, 0 $$
 $$ n = (0, 3, -1), 0, 3 $$
Example

Find an equation of the plane through the points \(A = (0, 0, 1), \) \(B = (2, 0, 0) \) and \(C = (0, 3, 0) \).

- A parametrisation of \(M \) is
 \[
 \mathbf{p} + s \mathbf{v} + t \mathbf{w} = (0, 0, 1) + s(2, 0, -1) + t(0, 3, -1)
 \]
- Find a normal vector:
 \[
 \mathbf{n} = \mathbf{v} \times \mathbf{w} = \begin{vmatrix}
 2 & 0 & -1 \\
 0 & 3 & -1 \\
 \end{vmatrix} = (3, 2, 6).
 \]
- The normal equation of \(M \) is
 \[
 \mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0
 \]
Example

Find an equation of the plane through the points $A = (0, 0, 1)$, $B = (2, 0, 0)$ and $C = (0, 3, 0)$.

- A parametrisation of M is
 \[p + sv + tw = (0, 0, 1) + s(2, 0, -1) + t(0, 3, -1) \]
- Find a normal vector:
 \[\mathbf{n} = \mathbf{v} \times \mathbf{w} = (2, 0, -1), 2, 0 \]
 \[(0, 3, -1), 0, 3 \]
 \[\mathbf{n} = (2, 0, -1) \times (0, 3, -1) = (3, 2, 6). \]
- The normal equation of M is
 \[\mathbf{n} \cdot (\mathbf{x} - p) = 0 \]
Example

Find an equation of the plane through the points \(A = (0, 0, 1), B = (2, 0, 0) \) and \(C = (0, 3, 0) \).

- A parametrisation of \(M \) is
 \[
 \mathbf{p} + s\mathbf{v} + t\mathbf{w} = (0, 0, 1) + s(2, 0, -1) + t(0, 3, -1)
 \]
- Find a normal vector:
 \[
 \mathbf{n} = \mathbf{v} \times \mathbf{w} = \begin{vmatrix}
 \mathbf{i} & \mathbf{j} & \mathbf{k} \\
 2 & 0 & -1 \\
 0 & 3 & -1
 \end{vmatrix} = (3, 2, 6).
 \]
- The normal equation of \(M \) is
 \[
 \mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0
 \]
 \[
 (3, 2, 6) \cdot \left((x, y, z) - (0, 0, 1) \right) = 0
 \]
Find an equation of the plane through the points $A = (0, 0, 1)$, $B = (2, 0, 0)$ and $C = (0, 3, 0)$.

- A parametrisation of M is
 \[p + sv + tw = (0, 0, 1) + s(2, 0, -1) + t(0, 3, -1) \]
- Find a normal vector:
 \[\mathbf{n} = \mathbf{v} \times \mathbf{w} = (2, 0, -1), 2, 0 \]
 \[(0, 3, -1), 0, 3 \]
 \[(3, 2, 6). \]
- The normal equation of M is
 \[\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0 \]
 \[(3, 2, 6) \cdot \left((x, y, z) - (0, 0, 1) \right) = 0 \]
 \[3x + 2y + 6(z - 1) = 0 \]
Example

Find an equation of the plane through the points $A = (0, 0, 1)$, $B = (2, 0, 0)$ and $C = (0, 3, 0)$.

- A parametrisation of M is
 \[p + sv + tw = (0, 0, 1) + s(2, 0, -1) + t(0, 3, -1) \]

- Find a normal vector:
 \[
 (2, 0, -1), 2, 0 \\
 n = v \times w = \begin{vmatrix} i & j & k \\ 2 & 0 & -1 \\ 0 & 3 & -1 \end{vmatrix} = (3, 2, 6). \\
 (0, 3, -1), 0, 3
 \]

- The normal equation of M is
 \[
 n \cdot (x - p) = 0 \\
 (3, 2, 6) \cdot \left((x, y, z) - (0, 0, 1) \right) = 0 \\
 3x + 2y + 6(z - 1) = 0 \\
 3x + 2y + 6z = 6
 \]
Theorem

Two different non-parallel planes intersect in a line.
Theorem

Two different non-parallel planes intersect in a line.

- Non-parallel means: the normals of both planes have different directions.
Theorem

Two different non-parallel planes intersect in a line.

- Non-parallel means: the normals of both planes have different directions.
- If the planes are called M and N, then the intersection line is denoted as follows:
 \[\ell = M \cap N. \]
Theorem

Two different non-parallel planes intersect in a line.

- Non-parallel means: the normals of both planes have different directions.
- If the planes are called M and N, then the intersection line is denoted as follows:
 \[\ell = M \cap N. \]
- A line in space can be regarded as the intersection line of two planes, in other words: it is the solution of a system of two equations:
 \[\ell: \begin{align*}
 ax + by + cz &= d, \\
 px + qy + rz &= s.
 \end{align*} \]
Example 8+9

Find a parametrisation of the intersection line of the planes

\[3x - 6y - 2z = 15 \quad \text{and} \quad 2x + y - 2z = 5. \]

Method 1:
Example

Find a parametrisation of the intersection line of the planes $\begin{align*}
3x - 6y - 2z &= 15 \\
2x + y - 2z &= 5.
\end{align*}$

Method 1:

- From the first equation follows $x = 2y + \frac{2}{3}z + 5.$
Example

Find a parametrisation of the intersection line of the planes

\[3x - 6y - 2z = 15 \text{ and } 2x + y - 2z = 5.\]

Method 1:

- From the first equation follows \(x = 2y + \frac{2}{3}z + 5.\)
- Substitution in the second equation gives
 \[
 2 \left(2y + \frac{2}{3}z + 5\right) + y - 2z = 5,
 \]
 and after simplification we have
 \[
 z = \frac{15}{2} y + \frac{15}{2}.
 \]
Example

Example 8+9

Find a parametrisation of the intersection line of the planes $3x - 6y - 2z = 15$ and $2x + y - 2z = 5$.

Method 1:

- From the first equation follows $x = 2y + \frac{2}{3}z + 5$.
- Substitution in the second equation gives

 $$2\left(2y + \frac{2}{3}z + 5\right) + y - 2z = 5,$$

 and after simplification we have

 $$z = \frac{15}{2}y + \frac{15}{2}.$$

- Choose one of the unknowns as parameter. For example, let $y = t$, then

 $$z = \frac{15}{2}t + \frac{15}{2} \quad \text{and} \quad x = 2t + \frac{2}{3}\left(\frac{15}{2}t + \frac{15}{2}\right) + 5 = 7t + 10.$$
Intersection line of two planes

Example

Find a parametrisation of the intersection line of the planes $3x - 6y - 2z = 15$ and $2x + y - 2z = 5$.

Method 1:

- From the first equation follows $x = 2y + \frac{2}{3}z + 5$.
- Substitution in the second equation gives
 \[2\left(2y + \frac{2}{3}z + 5\right) + y - 2z = 5, \]
 and after simplification we have
 \[z = \frac{15}{2} y + \frac{15}{2}. \]
- Choose one of the unknowns as parameter. For example, let $y = t$, then
 \[z = \frac{15}{2} t + \frac{15}{2} \quad \text{and} \quad x = 2t + \frac{2}{3} \left(\frac{15}{2} t + \frac{15}{2} \right) + 5 = 7t + 10. \]
- A parametrisation of the intersection line is
 \[\mathbf{r}(t) = \left(7t + 10, t, \frac{15}{2} t + \frac{15}{2}\right) = \left(10, 0, \frac{15}{2}\right) + t \left(7, 1, \frac{15}{2}\right), \quad t \in \mathbb{R}. \]
Method 2:

- The normal vectors \mathbf{n}_1 and \mathbf{n}_2 are perpendicular to the intersection line, so the cross product of \mathbf{n}_1 and \mathbf{n}_2 is a direction vector of the intersection line.
Method 2:

- The normal vectors \mathbf{n}_1 and \mathbf{n}_2 are perpendicular to the intersection line, so the cross product of \mathbf{n}_1 and \mathbf{n}_2 is a direction vector of the intersection line.

- Extract the normal vectors from the equations:

 \[M_1: 3x - 6y - 2z = 15, \quad \rightarrow \quad \mathbf{n}_1 = (3, -6, -2), \]

 \[M_2: 2x + y - 2z = 5, \quad \rightarrow \quad \mathbf{n}_2 = (2, 1, -2), \]

 hence $\mathbf{v} = \mathbf{n}_1 \times \mathbf{n}_2 = (14, 2, 15)$.
Intersection line of two planes

\[M_1: 3x - 6y - 2z = 15, \quad \rightarrow \quad n_1 = (3, -6, -2), \]
\[M_2: 2x + y - 2z = 5, \quad \rightarrow \quad n_2 = (2, 1, -2), \]
\[v = (14, 2, 15) \]

A support vector can be found by choosing a value for \(x, y \) or \(z \), and then solving both equations for \(x \) and \(y \). For example, choose \(y = 0 \):
\[3x - 2z = 15, \]
\[2x - 2z = 5. \]
Intersection line of two planes

\[M_1: 3x - 6y - 2z = 15, \quad \rightarrow n_1 = (3, -6, -2), \]
\[M_2: 2x + y - 2z = 5, \quad \rightarrow n_2 = (2, 1, -2), \]
\[v = (14, 2, 15) \]

A support vector can be found by choosing a value for \(x, y \) or \(z \), and then solving both equations for \(x \) and \(y \). For example, choose \(y = 0 \):

\[3x - 2z = 15, \]
\[2x - 2z = 5. \]

Subtracting both equations gives \(x = 10 \), and therefore \(z = \frac{15}{2} \).
Intersection line of two planes

\[M_1: 3x - 6y - 2z = 15, \quad \rightarrow \quad n_1 = (3, -6, -2), \]
\[M_2: 2x + y - 2z = 5, \quad \rightarrow \quad n_2 = (2, 1, -2), \]
\[v = (14, 2, 15) \]

- A support vector can be found by choosing a value for \(x, y\) or \(z\), and then solving both equations for \(x\) and \(y\). For example, choose \(y = 0\):
 \[3x - 2z = 15, \]
 \[2x - 2z = 5. \]

- Subtracting both equations gives \(x = 10\), and therefore \(z = \frac{15}{2}\).
- A support vector is \(p = \left(10, 0, \frac{15}{2} \right)\).
Intersection line of two planes

\[M_1 : 3x - 6y - 2z = 15, \quad \rightarrow \quad \mathbf{n}_1 = (3, -6, -2), \]
\[M_2 : 2x + y - 2z = 5, \quad \rightarrow \quad \mathbf{n}_2 = (2, 1, -2), \]
\[\mathbf{v} = (14, 2, 15) \]

- A support vector can be found by choosing a value for \(x, y \) or \(z \), and then solving both equations for \(x \) and \(y \). For example, choose \(y = 0 \):
\[
3x - 2z = 15, \\
2x - 2z = 5.
\]
- Subtracting both equations gives \(x = 10 \), and therefore \(z = \frac{15}{2} \).
- A support vector is \(\mathbf{p} = \left(10, 0, \frac{15}{2} \right) \).
- A parametrisation of the intersection line is
\[
\mathbf{p} + t \mathbf{v} = \left(10, 0, \frac{15}{2} \right) + t \left(14, 2, 15 \right)
= \left(10, 0, \frac{15}{2} \right) + 2t \left(7, 1, \frac{15}{2} \right).
\]
Assignment: IMM2 - Tutorial 8.2